00 1 Deformations of the Picard Bundle

نویسندگان

  • L. BRAMBILA
  • P. E. NEWSTEAD
چکیده

Let X be a nonsingular algebraic curve of genus g ≥ 3, and M ξ the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d coprime and d > n(2g − 2). We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3. Let W ξ (L) denote the vector bundle over M ξ defined as the direct image π * (U ξ ⊗ p * 1 L) where U ξ is a universal vector bundle over X × M ξ and L a line bundle over X of degree zero. The space of infinitesimal deformations of W ξ (L) is proved to be isomorphic to H 1 (X, O X). This construction gives a complete family of vector bundles over M ξ parametrized by Pic 0 (X) such that W ξ (L) is the vector bundle corresponding to L ∈ Pic 0 (X). The connected component of the moduli space of stable sheaves with the same Hilbert polynomial as W ξ (O) over M ξ containing W ξ (O) is in fact isomorphic to Pic 0 (X) as a polarised variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformations of the Generalised Picard Bundle

Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n0, d0 are integers such that n0 ≥ 1 and nd0 + n0d > nn0(2g − 2). Let E be a semistable vector bundle over ...

متن کامل

0 Ju n 20 02 DEFORMATIONS OF THE PICARD BUNDLE

Let X be a nonsingular algebraic curve of genus g ≥ 3, and let M ξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime and d > n(2g − 2). We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3. Let W ξ (L) denote the vector bundle over M ξ defined by the direct image p M ξ * (U ξ ⊗ p * X L) where U ξ is a ...

متن کامل

On the algebraic solutions of the sixth Painlevé equation related to second order Picard-Fuchs equations

We describe two algebraic solutions of the sixth Painlevé equation which are related to (isomonodromic) deformations of Picard-Fuchs equations of order two. 1 Statement of the result In this note we describe two algebraic solutions of the following Painlevé VI ( PV I) equation dλ dt2 = 1 2 ( 1 λ + 1 λ− 1 + 1 λ− t )( dλ dt ) − ( 1 t + 1 t− 1 + 1 λ− t ) dλ dt + λ(λ− 1)(λ− t) t2(t2 − 1) [α + β t λ...

متن کامل

Vector Bundles and Monads on Abelian Threefolds

Using the Serre construction, we give examples of stable rank 2 vector bundles on principally polarized abelian threefolds (X,Θ) with Picard number 1. The Chern classes (c1, c2) of these examples realize roughly one half of the classes that are a priori allowed by the Bogomolov inequality and Riemann-Roch (the latter gives a certain divisibility condition). In the case of even c1, we study defo...

متن کامل

The D 5 - brane effective action and superpotential in N = 1 compactifications

The four-dimensional effective action for D5-branes in generic compact Calabi-Yau orientifolds is computed by performing a Kaluza-Klein reduction. TheN = 1 Kähler potential, the superpotential, the gauge-kinetic coupling function and the D-terms are derived in terms of the geometric data of the internal space and of the two-cycle wrapped by the D5-brane. In particular, we obtain the D5-brane an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001